Introduction to WhisperX
WhisperX is a transcription library built on top of OpenAI’s Whisper with some additional features, including word-level timestamps and speaker diarization. It enables ⚡️ 70x realtime transcription with the Whisper large-v2 model and requires under 8GB GPU memory with beam_size=5.
For more details about why you might choose WhisperX over Whisper, or one of the other Whisper variants, see our comparison blog post.
Example code for running the WhisperX speech recognition model on Modal
To run the following code, you will need to:
- Create an account at modal.com
- Run
pip install modal
to install the modal Python package - Run
modal setup
to authenticate (if this doesn’t work, trypython -m modal setup
) - Copy the code below into a file called
app.py
- Run
modal run app.py
import modal
cuda_version = "12.4.0" # should be no greater than host CUDA version
flavor = "devel" # includes full CUDA toolkit
operating_sys = "ubuntu22.04"
tag = f"{cuda_version}-{flavor}-{operating_sys}"
image = (
modal.Image.from_registry(f"nvidia/cuda:{tag}", add_python="3.11")
.apt_install(
"git",
"ffmpeg",
)
.pip_install(
"torch==2.0.0",
"torchaudio==2.0.0",
"numpy<2.0",
index_url="https://download.pytorch.org/whl/cu118",
)
.pip_install(
"git+https://github.com/Hasan-Naseer/whisperX.git@release/latest-faster-whisper-version",
"ffmpeg-python",
"ctranslate2==4.4.0",
)
)
app = modal.App("example-base-whisperx", image=image)
GPU_CONFIG = modal.gpu.H100(count=1)
CACHE_DIR = "/cache"
cache_vol = modal.Volume.from_name("whisper-cache", create_if_missing=True)
@app.cls(
gpu=GPU_CONFIG,
volumes={CACHE_DIR: cache_vol},
allow_concurrent_inputs=15,
container_idle_timeout=60 * 10,
timeout=60 * 60,
)
class Model:
@modal.enter()
def setup(self):
import whisperx
device = "cuda"
compute_type = (
"float16" # change to "int8" if low on GPU mem (may reduce accuracy)
)
# 1. Transcribe with original whisper (batched)
self.model = whisperx.load_model("large-v2", device, compute_type=compute_type, download_root=CACHE_DIR)
@modal.method()
def transcribe(self, audio_url: str):
import requests
import whisperx
batch_size = 16 # reduce if low on GPU mem
response = requests.get(audio_url)
# Save the audio file locally
with open("downloaded_audio.wav", "wb") as audio_file:
audio_file.write(response.content)
audio = whisperx.load_audio("downloaded_audio.wav")
result = self.model.transcribe(audio, batch_size=batch_size)
return result["segments"]
# ## Run the model
@app.local_entrypoint()
def main():
url = "https://pub-ebe9e51393584bf5b5bea84a67b343c2.r2.dev/examples_english_english.wav"
print(Model().transcribe.remote(url))