Introduction to Llama 3.1 8B Instruct
The Meta Llama 3.1 collection of multilingual large language models (LLMs) is a collection of pretrained and instruction tuned generative models. The Llama 3.1 8B Instruct model is optimized for multilingual dialogue use cases and outperforms many of the available open source and closed chat models on common industry benchmarks.
Example code for running the Llama 3.1 8B Instruct LLM on Modal
To run the following code, you will need to:
- Create an account at modal.com
- Run
pip install modal
to install the modal Python package - Run
modal setup
to authenticate (if this doesn’t work, trypython -m modal setup
) - Copy the code below into a file called
app.py
- Run
modal run app.py
Please note that this code is not optimized for best performance. To run Llama 3.1 8B Instruct with a LLM serving framework like vLLM for better latency and throughput, refer to this more detailed example here.
import modal
MODEL_ID = "NousResearch/Meta-Llama-3-8B"
MODEL_REVISION = "315b20096dc791d381d514deb5f8bd9c8d6d3061"
image = modal.Image.debian_slim().pip_install("transformers", "torch", "accelerate")
app = modal.App("example-base-Meta-Llama-3-8B", image=image)
GPU_CONFIG = modal.gpu.H100(count=2)
CACHE_DIR = "/cache"
cache_vol = modal.Volume.from_name("hf-hub-cache", create_if_missing=True)
@app.cls(
gpu=GPU_CONFIG,
volumes={CACHE_DIR: cache_vol},
allow_concurrent_inputs=15,
container_idle_timeout=60 * 10,
timeout=60 * 60,
)
class Model:
@modal.enter()
def setup(self):
import torch
import transformers
self.pipeline = transformers.pipeline(
"text-generation",
model=MODEL_ID,
revision=MODEL_REVISION,
cache_dir=CACHE_DIR,
model_kwargs={"torch_dtype": torch.bfloat16},
device_map="auto",
)
@modal.method()
def generate(self, input: str):
return self.pipeline(input)
# ## Run the model
@app.local_entrypoint()
def main(prompt: str = None):
if prompt is None:
prompt = "Please write a Python function to compute the Fibonacci numbers."
print(Model().generate.remote(prompt))