What is nvidia-smi?
This command line utility is used to query and manage the state of the GPU exposed by the NVML management libraries. Its outputs, a sample of which appears below, are familiar to users of NVIDIA GPUs to the point of being a meme .
nvidia-smi reports the following:
- GPU identity information like the card's model name, a UUID, and the PCI ID
- live utilization metrics for kernel execution time and memory allocation
- live power and thermal information
For details on these metrics, including how to interpret power and thermal readings, see this page on the Modal docs .
nvidia-smi can also list processes currently using the GPU (-q, --query,
pmon). Common management tasks include setting persistence mode (-pm),
compute mode (-c), power limits (-pl), application/locked clocks (-ac,
-lgc, -lmc), and performing GPU resets (-r).
Output can be formatted as human-readable text or XML (-x). While
nvidia-smi's text output format is not guaranteed to be stable, the underlying
NVML C library offers a stable API for tool
development.
The documentation for nvidia-smi can be found
here , and the official Python
bindings can be found here .
+-----------------------------------------------------------------------------------------+
| NVIDIA-SMI 575.57.08 Driver Version: 575.57.08 CUDA Version: 12.9 |
|-----------------------------------------+------------------------+----------------------+
| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|=========================================+========================+======================|
| 0 NVIDIA B200 On | 00000000:51:00.0 Off | 0 |
| N/A 27C P0 136W / 1000W | 0MiB / 183359MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+------------------------+----------------------+
| 1 NVIDIA B200 On | 00000000:52:00.0 Off | 0 |
| N/A 25C P0 140W / 1000W | 0MiB / 183359MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+------------------------+----------------------+
| 2 NVIDIA B200 On | 00000000:62:00.0 Off | 0 |
| N/A 27C P0 138W / 1000W | 0MiB / 183359MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+------------------------+----------------------+
| 3 NVIDIA B200 On | 00000000:63:00.0 Off | 0 |
| N/A 26C P0 138W / 1000W | 0MiB / 183359MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+------------------------+----------------------+
| 4 NVIDIA B200 On | 00000000:75:00.0 Off | 0 |
| N/A 27C P0 139W / 1000W | 0MiB / 183359MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+------------------------+----------------------+
| 5 NVIDIA B200 On | 00000000:76:00.0 Off | 0 |
| N/A 25C P0 140W / 1000W | 0MiB / 183359MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+------------------------+----------------------+
| 6 NVIDIA B200 On | 00000000:86:00.0 Off | 0 |
| N/A 27C P0 142W / 1000W | 0MiB / 183359MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+------------------------+----------------------+
| 7 NVIDIA B200 On | 00000000:87:00.0 Off | 0 |
| N/A 26C P0 138W / 1000W | 0MiB / 183359MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+------------------------+----------------------+
Building on GPUs? We know a thing or two about it.
Modal is an ergonomic Python SDK wrapped around a global GPU fleet. Deploy serverless AI workloads instantly without worrying about quota requests, driver compatibility issues, or managing bulky ML dependencies.
Or want to contribute?
Click this button to
let us know on GitHub.